THE JOURNAL OF ANTIBIOTICS

SEPT. 1992

NEW ANTIVIRAL ANTIBIOTICS, CYCLOVIRACINS B_1 AND B_2 II. STRUCTURE DETERMINATION

MITSUAKI TSUNAKAWA, CHIKAKO KOTAKE, TETSURO YAMASAKI, Toshio Moriyama, Masataka Konishi and Toshikazu Oki

Bristol-Myers Squibb Research Institute, 2-9-3 Shimo-meguro, Meguro-ku, Tokyo 153, Japan

(Received for publication May 11, 1992)

The structures of novel antiviral antibiotics, cycloviracins B_1 and B_2 have been determined by means of chemical and spectroscopic methods including 2D NMR correlation spectroscopy. The antibiotics are unique macrocyclic diesters consisting of two D-glucoses, three 2-O-methyl-D-glucoses and two (C₂₄ and C₂₆) hydroxy fatty acids.

Cycloviracins B_1 and B_2 are new antiviral antibiotics isolated from the fermentation broth of *Kibdelosporangium albatum* No. R 761-7 (ATCC 55061). Their production, isolation, physico-chemical and biological properties are reported in the preceding paper¹). We report their structure determination in this paper.

General Structural Characteristics

Cycloviracins B_1 (1a) and B_2 (1b) are neutral, white amorphous powders. The molecular formulae of 1a and 1b were determined to be $C_{83}H_{152}O_{33}$ and $C_{83}H_{150}O_{33}$, respectively, based on the elemental analysis and negative FAB-MS. The IR spectrum of 1a exhibited absorption bands at 3410, 1740 and $1100 \sim 1000 \text{ cm}^{-1}$ and that of 1b was similar to 1a with an additional band at 1720 cm^{-1} . The ¹H NMR spectrum of 1a (Table 1) revealed the presence of five anomeric protons (δ 5.23 ~ 4.82), three *O*-methyls (δ 3.82 × 2 and 3.77), two *C*-methyls (δ 1.34 and 1.22) and more than thirty methylenes (δ 1.1~1.9). The spectrum of 1b (Table 1) was similar to that of 1a except the presence of a singlet methyl (δ 2.03) and a low-field triplet methylene (δ 2.36) but lack of one of the two doublet methyls (δ 1.34) in 1a. The spectral data suggested that 1a and 1b were composed of five sugars and long alkyl chain(s) (possibly fatty acids) with their structural difference being in only that the –CHOHCH₃ moiety of 1a was –COCH₃ in 1b. The ¹³C NMR spectra of 1a and 1b (Table 2) supported the above assumption.

Degradation Studies (Chart 1)

Upon alkaline hydrolysis, **1a** afforded the hydrolysis products **2** ($C_{32}H_{62}O_{10}$), **3** ($C_{41}H_{78}O_{15}$) and **4** ($C_6H_{12}O_6$), while **1b** gave **5** ($C_{32}H_{60}O_{10}$) in addition to **3** and **4**. **4** was identified as an anomeric mixture of D-glucose by the spectral data^{2,3)} and optical rotation. Compound **3** showed two anomeric protons (δ 4.85 and 4.82), three *O*-methyls (δ 3.82, 3.77 and 3.41) and one *C*-methyl (δ 1.22) in the ¹H NMR and gave two products, **6** and **7** upon acid hydrolysis. The ¹H NMR spectrum of **2** exhibited one anomeric proton (δ 4.83), two *O*-methyls (δ 3.79 and 3.40) and one *C*-methyl (δ 1.32), while the spectrum of **5** showed that the doublet methyl (δ 1.32) of **2** was replaced by a singlet methyl (δ 2.03) reflecting the structural difference of **1a** and **1b** as discussed earlier. Upon acid methanolysis, **2** afforded **7** ($C_8H_{16}O_6$)

1473

Table 1. ¹H NMR data of cycloviracins $B_1(1a)$ and B_2 (1b) (400 MHz, pyridine- d_5).

Сус	cloviracin \mathbf{B}_1 (1a)	Cycloviracin B_2 (1b)						
δ 5.23	(2H, br-d, J=9.4)	δ 5.24	(2H, br-d, J=9.8)					
4.89	(1H, d, J=7.7)	4.90	(1H, d, J=7.7)					
4.85	(1H, d, J = 7.7)	4.85	(1H, d, J=7.7)					
4.82	(1H, d, J=7.7)	4.82	(1H, d, J=8.1)					
4.4~4.6	(8H, m)	4.4~4.6	(8H, m)					
4.34	(4H, m)	4.34	(4H, m)					
4.15	(10H, m)	4.15	(10H, m)					
3.9~4.1	(8H, m)	3.9~4.1	(7H, m)					
3.86	(3H, m)	3.86	(3H, m)					
3.82	(6H, s)	3.82	(6H, s)					
3.77	(3H, s)	3.77	(3H, s)					
3.62	(2H, dd, J=4.7, 15.4)	3.62	(2H, dd, J=4.3, 15.4)					
3.42	(3H, q-like, J=8.7)	3.42	(3H, q-like, J=8.6)					
2.79	(2H, dd, J=9.4, 15.4)	2.79	(2H, dd, J=9.0, 15.4)					
1.1~1.9	(76H, m)	2.36	(2H, t, J=7.3)					
1.34	(3H, d, J=6.4)	2.03	(3H, s)					
1.22	(3H, d, J = 6.4)	1.1~1.9	(74H, m)					
		1.22	(3H, d, J = 6.0)					

 δ in ppm downfield from TMS, using pyridine- d_5 (7.55 ppm) as an internal standard.

and 8 (C₂₆H₅₂O₅), while 5 yielded 7 and 9 (C₂₆H₅₀O₅). Compound 7 was further separated by a silica gel chromatography to 7a and 7b which were identified as methyl α - and β -2-O-methyl-D-glucopyranoside, respectively, by a comparison with the authentic samples^{4,5}).

Structures of 6, 8 and 9

Compound 6 ($C_{28}H_{56}O_5$) showed an ester carbonyl band at 1740 cm⁻¹ in the IR spectrum. The ¹H

Table 2.	¹³ C N	NMR	data	of	cycloviracins	B ₁	(1 a),	B_2	(1b)	and	the	degradation	products	3, 5	, 6,	, 10	and 11	
(100 N	ИHz, p	oyridii	$ne-d_5)$	•														

Carbon*	1a	1b	3	5	6	10	11
1,1'	171.7	171.7	161.6	161.4	172.2	172.4	172.3
2,2'	42.4	42.4	40.2	43.4	40.2	41.7	41.6
3,3'	78.9	78.9	78.3	78.6	78.0	77.4	77.3
19	79.3	79.3	79.2		70.9		79.2
25	74.2	74.2	74.1		67.0		74.1
26	19.5	19.5	19.5		24.3		19.5
27,25′	106.4	106.4				104.9	104.8
28,26'	75.1	75.1				75.2	75.2
29,27′	78.3	78.3				78.4	78.4
30,28′	72.1	72.1				71.9	71.8
31,29′	74.5	74.5				78.1	78.0
32,30′	65.3	65.4				63.0	62.9
17'	79.3	79.2		79.2		79.2	
22'	40.1	43.4		43.4		43.4	
23'	67.0	208.1		208.1		208.0	
24′	24.3	29.6		29.6		29.6	
1,1'-CO ₂ CH ₃					51.4	51.4	51.3
3,3'-OCH ₃			56.6	56.6	56.7		
1A	103.1	103.1	103.0				103.0
2A	85.3	85.3	85.2				85.2
3A	77.7	77.7	77.7				77.7
4A	71.8	71.8	71.8				71.7
5A	78.0	78.0	78.0				78.0
6A	62.9	62.9	62.8				62.8
2A-OCH ₃	60.7	60.8	60.7				60.7
1B	101.8	101.8	101.7				101.7
2B	85.0	85.1	85.0				85.0
3B	77.6	77.6	77.5				77.5
4B	71.7	71.7	71.7				71.7
5B	78.0	78.0	77.9				77.9
6B	62.8	62.8	62.7				62.7
2B-OCH ₃	60.6	60.6	60.6				60.6
1C	103.1	103.1		103.1		103.1	
2C	85.3	85.3		85.3		85.3	
3C	77.7	77.7		77.7		77.7	
4C	71.8	71.8		71.8		71.7	
5C	78.1	78.1		78.0		78.0	
6C	62.9	62.9		62.9		62.9	
2C-OCH ₃	60.7	60.8		60.8		60.8	

Heavily overlapped methylene carbons are not included in this table.

* Carbon numbers and alphabetical suffixes are the same as in Fig. 1.

Chart 1.

Fig. 2. Structures of the degradation products 2, 3, 5, 10 and 11.

NMR spectrum exhibited three O-methines (δ 3.6~4.2), two O-methyls (δ 3.63 and 3.33), one methylene adjacent to a carbonyl group (δ 2.70 and 2.47), twenty other methylenes and one C-methyl. The ¹³C NMR (Table 2) showed the presence of an ester carbonyl in addition to the above assigned groups. Thus, 6 was determined to be methyl ester of a straight chain C_{26} - acid having one O-methyl and two hydroxy groups. In fact, 6 gave a di-O-acetate (m/z 556, M⁺) by treatment with acetic anhydride in pyridine. In the ¹H NMR spectrum of diacetyl-6, two O-methine protons were observed at lower field (δ 4.86 \times 2), and one of them was identified to be adjacent to the terminal methyl (δ 1.19) by ¹H-¹H COSY spectrum. The COSY experiment demonstrated that the O-methyl-bearing methine proton (δ 3.62) was connected to the methylene (δ 2.53 and 2.41) adjacent to the ester carbonyl group. Thus, the partial structures of $-CH(OAc)CH_3$ and $-CH(OMe)CH_2CO_2Me$ was established for diacetyl-6. The positions of the O-methyl and hydroxyl groups were unequivocally established by the EI-MS (Fig. 3). 6 showed prominent fragment ion peaks at m/z 357, 325, 293, 275, 117, 75 and 45 in addition to m/z 436 (M-2H₂O)⁺ and its acetate gave the corresponding 42 mass units higher ions (m/z 399 and 87). It is well known that m/z 75 and 117 are the key fragment ions observed in the mass spectra of 3-O-methyl fatty acid methyl esters⁶). The ions at m/z 357 and 45 together with m/z 75 indicated that the OCH₃ and two hydroxyl groups were located at C-3, and C-19 and 25, respectively. Thus, 6 is methyl 3-methoxy-19,25-dihydroxyhexacosanoate (Fig. 3). The molecular formula $(C_{26}H_{52}O_5)$ of 8 and its very similar physico-chemical properties to those of 6 suggested that 8 is a C_2 unit shorter acid analog of 6. Diagnostic fragment ions were observed at m/z408 $(M - 2H_2O)^+$, 329, 297, 265, 247, 117, 75 and 45 in the EI-MS establishing 8 to be methyl 3-methoxy-17,23-dihydroxytetracosanoate (Fig. 3).

The IR spectrum of $9 (C_{26}H_{50}O_5)$ showed a ketone carbonyl band at 1710 cm^{-1} in addition to an ester band at 1740 cm^{-1} . The EI-MS spectrum of 9 exhibited the fragment ions m/z 424 (M-H₂O)⁺, 329, 297, 265, 247, 117, 75 and 43. The characteristic ion of 9 at m/z 43 instead of m/z 45 of 6 and 8 confirmed the assumption that the carbon terminal of 9 is CH₃CO-. Thus, 9 was determined to be methyl 3-methoxy-17-hydroxy-23-oxotetracosanoate (Fig. 3).

Fig. 3. Structures and mass fragmentations of 6, 8 and 9.

Structures of 2, 3 and 5

Compound **3** was assigned to have a molecular formula of $C_{41}H_{78}O_{15}$ by negative HRFAB-MS, and showed a strong IR absorption at around 1680 cm⁻¹. Its ¹³C NMR was indicative of one acid carbon (δ 161.6), two anomeric carbons (δ 103.0 and 101.7) and three OCH₃ (δ 60.7, 60.6 and 56.6) suggesting that **3** was a free acid of **6** containing two 2-*O*-methyl-D-glucose. The sugars were determined

to attach to C-19 and C-25 hydroxyls based on the observed glycosidation shift⁷ ($\Delta \delta_c$: +8.3 at C-19 and +7.1 at C-25) between **3** and **6** (Table 2). The large coupling constant (J = 7.7 Hz) of two anomeric protons allowed to assign β -configuration of the sugars. Thus, **3** was 3-methoxy-19,25-di-(2-*O*-methyl- β -D-glucopyranosyloxy)hexacosanoic acid (Fig. 2).

The molecular formulae of 2 and 5 were determined to be $C_{32}H_{62}O_{10}$ and $C_{32}H_{60}O_{10}$, respectively, by negative HRFAB-MS. The IR band at 1680 cm⁻¹ and the carbon signals (Table 2) suggested that 5 was a free acid of 9 containing one 2-O-methyl-D-glucose at C-17. The splitting of the anomeric proton (J=8.1 Hz) was indicative of β -configuration of the sugar. Similarly, 2 was determined to be the free acid of 8 having 2-O-methyl-D-glucose at C-17. Thus, 2 and 5 are 3-methoxy-17-(2-O-methyl- β -Dglucopyranosyloxy)-23-hydroxytetracosanoic acid and its 23-oxo analog, respectively (Fig. 2).

Structures of 10 and 11

In order to elucidate the presumed ester linkages between D-glucose, 2 (or 5) and 3, the mild alkaline hydrolysis (0.05 N KOH - MeOH) was carried out for 1b (Chart 2) to yield two hydrolysis products 10 ($C_{38}H_{70}O_{15}$) and 11 ($C_{47}H_{88}O_{20}$). 10 showed an ester and a ketone by the IR spectrum (1710 and 1730 cm⁻¹) and ¹³C NMR (δ 208.0 and 172.4). Two anomeric (δ 104.9 and 103.1), two OCH₃ (δ 60.8 and 51.4) and one C–CH₃ (δ 29.6) carbons were also identified by the ¹³C NMR (Table 2). Upon further hydrolysis with 1 N KOH - MeOH, 10 afforded 5 and 4. This result together with the spectral data indicated that 10 was methyl 3-(β -D-glucopyranosyloxy)-17-(2-O-methyl- β -D-glucopyranosyloxy)-23-oxoteracosano-

ate (Fig. 2). 11 showed only an ester carbonyl in the IR spectrum (1735 cm⁻¹) and gave 3 and 4 by alkaline hydrolysis. These facts indicated that 11 was methyl 3-(β -D-glucopyranosyloxy)-19,25-di-(2-O-methyl- β -D-glucopyranosyloxy)hexacosanoate (Fig. 2). All the anomeric protons in 10 and 11 showed large coupling constants ($J=7 \sim 8$ Hz) allowing to assign β -configuration of the sugars.

Structures of 1a and 1b

The ¹³C NMR data of **1a**, **1b** and the degradation products **3**, **5**, **6**, **10** and **11** were summarized in Table 2. The assignments were made on the basis of the ¹H-¹H, ¹H-¹³C and ¹³C-¹H long range COSY NMR spectra. Taking into consideration of the molecular formulae of **10** ($C_{38}H_{70}O_{15}$), **11** ($C_{47}H_{88}O_{20}$) and **1b** ($C_{83}H_{150}O_{33}$) and their ¹³C NMR data, it is reasonable that **1b** was cleavaged only at two ester bonds (C-1 and C-1') to give **10** and **11** by alkaline methanol. Most of the carbon signals of **10** and **11** corresponded well to those of **1b** with the exception of C-5 and C-6 signals of the D-glucose moieties. The chemical shifts of C-29' and C-31, and C-30' and C-32 in **1b** were observed at δ 74.5 and 65.4, respectively, while the corresponding signals of **10** and **11** were δ 78.1 and 63.0, and δ 78.0 and 62.9, respectively. These differences could be ascribed to β -upfield shift ($\Delta\delta$ - 3.6 and -3.5 at C-29' and C-31, respectively) and α -down field shift ($\Delta\delta$ + 2.4 and + 2.5, at C-30' and C-32, respectively) by acylation at C-6 hydroxyls of the two D-glucoses in **1b**⁸.

Accordingly, a macrocyclic diester structure as depicted in Fig. 1 was established to 1b, and 1a was its 23'-hydroxy analog.

Discussion

The structures of cycloviracins B_1 and B_2 have been established by a combination of chemical degradation and spectral analysis of the products. They are macrocyclic dilactones composed of two D-glucose, three 2-O-methyl-D-glucose and two polyhydroxylated fatty acids. There have been reported two antibiotics rhamnolipids⁹⁾ and glykenins¹⁰⁾ consisting of sugars and fatty acids. These antibiotics are straight chain glycosylated fatty acids or acyl fatty acids and have inhibitory activity against Gram-positive bacteria and viruses. Cycloviracins B_1 and B_2 distinctly differ from these known antibiotics in that they form macrocyclic diester structures. Both cycloviracins B_1 and B_2 were strongly active against herpes simplex virus type 1¹⁾ but the hydrolysis products lacked the activity except that compound 11 showed a reduced activity against the virus.

Experimental

IR spectra were determined on a Jasco IRA-1 spectrometer and optical rotations on a Jasco DLP-400 automatic polarimeter. ¹H and ¹³C NMR spectra were recorded on a Varian FT-80A or Jeol JMN-GX 400 spectrometer. EI-MS and FAB-MS were measured on a Jeol JMS-AX 505H mass spectrometer. Thin layer chromatography (TLC) was performed on silica gel plates (Kiesel gel 60 F₂₅₄, Merck).

Alkaline Hydrolysis of 1a and 1b

Upon a small scale of alkaline hydrolysis ($1 \times KOH$ - MeOH, $43^{\circ}C$, 1.5 hours), 1a and 1b were found to afford degradation products 2, 3 and 4 and 3, 4 and 5, respectively by TLC. In order to isolate the products, a large scale degradation was carried out. A solution of the cycloviracin mixture (1a: 1b=1:1, 170 mg) in $1 \times KOH$ - MeOH (35 ml) was left standing at $43^{\circ}C$ for 1.5 hours. The reaction mixture was diluted with water, adjusted to pH 7 with $6 \times HCl$ and evaporated. The aqueous solution was then extracted with ethyl acetate at pH 2.5. The extract was evaporated to give a residue (130 mg) which was purified by a silica gel column chromatography (Wakogel C-200, 50 ml) eluted with CH_2Cl_2 - MeOH (25:1, 15:1 and 9:1). Each fractions were monitored by TLC ($SiO_2:CH_2Cl_2$ - MeOH 3:1, H_2SO_4 detection). The eluate containing 5 (Rf 0.5) was concentrated to give a pale-yellow oil (17 mg) of 5. Similarly, the eluates containing 2 (Rf 0.37) and 3 (Rf 0.24) afforded a pale yellow oil (14 mg) of 2 and a white sticky solid (43 mg) of 3, respectively.

The water layer after ethyl acetate above extraction was concentrated and chromatographed on columns of Amberlite CG-50 (NH_4^+) with water and Sephadex LH-20 with 50% MeOH to give a white sticky solid (23 mg) of 4.

2: (-) HRFAB-MS, $(M-H)^-$, m/z calcd: 605.4265, found: 605.4260, ¹H NMR (400 MHz, pyridine- d_5) δ 4.83 (1H, d, J = 7.7 Hz), 4.48 (1H, dd, J = 2.6 and 11.5 Hz), 4.32 (1H, dd, J = 5.1 and 11.5 Hz), 4.12 (2H, m), 3.95 (3H, m), 3.82 (1H, m), 3.79 (3H, s), 3.40 (3H, s and 1H, m), 2.86 (1H, dd, J = 6.8 and 15.0 Hz), 2.67 (1H, dd, J = 5.5 and 15.0 Hz), 1.32 (3H, d, J = 6.0 Hz), 1.2 \sim 1.8 (36H, m).

3: (-) HRFAB-MS, (M-H)⁻, m/z calcd: 809.5262, found: 809.5266, IR (neat) cm⁻¹ 3400, 2920, 2850, 1680 (br), 1100~1000, ¹H NMR (400 MHz, pyridine- d_5) δ 4.85 (1H, d, J=7.7Hz), 4.82 (1H, d, J=7.7Hz), 4.51 (2H, dd, J=2.6 and 11.3 Hz), 4.34 (2H, dd, J=5.9 and 11.3 Hz), 4.14 (4H, m), 4.03 (1H, q, J=6.2Hz), 3.94 (2H, m), 3.85 (2H, m), 3.82 (3H, s), 3.77 (3H, s), 3.43 (1H, t, J=9.2Hz), 3.41 (3H, s), 3.40 (1H, t, J=9.2Hz), 2.87 (1H, dd, J=7.0 and 15.0 Hz), 2.69 (1H, dd, J=5.5 and 15.0 Hz), 1.2~1.8 (40H, m), 1.22 (3H, d, J=6.2Hz), ¹³C NMR see Table 2.

4: FAB-MS m/z 179 (M-H)⁻, $[\alpha]_D^{25}$ +45° (c 0.5, H₂O), 4 was identical with D-glucopyranose from the spectral data and by comparison with an authentic sample.

5: (-) HRFAB-MS, (M-H)⁻, m/z calcd: 603.4108, found: 603.4101, IR (neat) cm⁻¹ 3400, 2920, 2800, 1680 (br), 1100~1000. ¹H NMR (400 MHz, pyridine- d_5) δ 4.84 (1H, d, J=8.1 Hz), 4.51 (1H, dd, J=2.2 and 11.7 Hz), 4.35 (1H, dd, J=5.1 and 11.7 Hz), 4.18 (1H, t, J=8.8 Hz), 4.14 (1H, t, J=8.9 Hz), 3.94 (2H, m), 3.87 (1H, ddd, J=2.2, 5.1 and 8.8 Hz), 3.81 (3H, s), 3.43 (1H, t, J=8.1 Hz), 3.41 (3H, s), 2.87 (1H, dd, J=7.0 and 15.0 Hz), 2.69 (1H, dd, J=5.5 and 15.0 Hz), 2.36 (2H, t, J=7.3 Hz), 2.03 (3H, s), 1.2~1.8 (34H, m), ¹³C NMR see Table 2.

Acid Methanolysis of 2, 3 and 5

A solution of 3 (40 mg) in 2 N HCl-MeOH (4 ml) was heated to reflux for 2 hours and evaporated. The residue was diluted with water and then extracted with ether. Evaporation of the ethereal extract afforded a white powder (19 mg) of 6. Concentration of the water layer gave a light-brown solid (7, 24 mg) which was applied on a column of silica gel (40 ml) eluted with EtOAc-MeOH-H₂O (10:0.5:0.05). The first anthrone positive fractions were pooled and concentrated to give a white sticky solid (3.0 mg) of 7b and the second gave a solid (7.8 mg) of 7a. By a similar treatment, 2 (4 mg) afforded white powders of 8 (2 mg), 7a and 7b, and 5 (12 mg) afforded 9 (6 mg) and 7a and 7b mixture.

6: (+) HRFAB-MS, (M+H)⁺, m/z calcd: 473.4206, found: 473.4209, IR (KBr) cm⁻¹ 3340, 2920, 2850, 1740, 1470, 1130, 725, ¹H NMR (80 MHz, pyridine- d_5) δ 3.6~4.2 (3H, m), 3.63 (3H, s), 3.33 (3H, s), 2.70 (1H, dd, J = 7 and 15 Hz), 2.47 (1H, dd, J = 6 and 15 Hz), 1.1~1.9 (43H, m). ¹³C NMR see Table 2.

7a: FAB-MS m/z 209 (M + H)⁺, $[\alpha]_D^{25}$ +138° (c 0.4, H₂O), ¹H NMR (400 MHz, D₂O) δ 5.06 (1H, d, J = 3.7 Hz), 3.88 (1H, dd, J = 2.6 and 12.5 Hz), 3.77 (1H, dd, J = 5.5 and 12.5 Hz), 3.69 (1H, t-like, J = 9.5 Hz), 3.62 (1H, m), 3.49 (3H, s), 3.44 (3H, s), 3.43 (1H, t-like, J = 9.5 Hz), 3.30 (1H, dd, J = 3.7 and 9.9 Hz).

7b: FAB-MS m/z 209 (M+H)⁺, $[\alpha]_D^{25} - 15^{\circ}$ (c 0.2, H₂O), ¹H NMR (400 MHz, D₂O) δ 4.44 (1H, d, J = 8.1 Hz), 3.93 (1H, dd, J = 2.2 and 12.5 Hz), 3.73 (1H, dd, J = 5.9 and 12.5 Hz), 3.59 (6H, s), 3.55 (1H, t-like, J = 9.2 Hz), 3.45 (1H, m), 3.40 (1H, t-like, J = 9.2 Hz), 3.03 (1H, dd, J = 8.1 and 9.5 Hz). **7a** and **7b** were identified as methyl α and β -2-O-methyl-D-glucopyranoside respectively by their spectral data. **7b** and its acetate were identical with their authentic samples by TLC.

8: (+) HRFAB-MS, $(M+H)^+$, m/z calcd: 445.3893, found: 445.3906, IR (KBr) cm⁻¹ 3350, 2920, 2850, 1740, 1470, 1130, 720.

9: (+) HRFAB-MS, $(M+H)^+$, m/z calcd: 443.3737, found: 443.3728, IR (KBr) cm⁻¹ 3330, 3240, 2920, 2850, 1740, 1710, 1470, 1100, 725, ¹H NMR (80 MHz, pyridine- d_5) δ 3.6~3.9 (2H, m), 3.65 (3H, s), 3.35 (3H, s), 2.71 (1H, dd, J=7 and 15 Hz), 2.51 (1H, dd, J=6 and 15 Hz), 2.35 (2H, t, J=7 Hz), 2.04 (3H, s), 1.2~1.8 (34H, m).

Acetylation of 6, 8 and 9 in acetic anhydride in pyridine gave diacetyl-6, diacetyl-8 and monoacetyl-9, respectively. Diacetyl-6: EI-MS m/z 556 (M⁺), 496 (M – AcOH)⁺, 436 (M – 2AcOH)⁺, 357, 325, 293, 275, 117 and 75. ¹H NMR (400 MHz, CDCl₃) δ 4.86 (2H, septet-like, J=6.4 Hz), 3.69 (3H, s), 3.62 (1H,

quintet-like, J = 6.1 Hz), 3.34 (3H, s), 2.53 (1H, dd, J = 7.3 and 15.0 Hz), 2.41 (1H, dd, J = 5.1 and 15.0 Hz), 2.03 (3H, s), 2.02 (3H, s), $1.6 \sim 1.4$ (*ca.* 12H, m), $1.3 \sim 1.2$ (*ca.* 34H, m), 1.19 (3H, d, J = 6.4 Hz).

Diacetyl-8: EI-MS m/z 528 (M⁺), 468 (M-AcOH)⁺, 408 (M-2AcOH)⁺, 329, 297, 265, 247, 117 and 75.

Monoacetyl-9: EI-MS m/z 484 (M⁺), 424 (M-AcOH)⁺, 329, 297, 265, 247, 117, 75.

Mild Alkaline Hydrolysis of 1b

A solution of 1b (170 mg) in 0.05 N KOH-MeOH (34 ml) was kept at 42° C for 40 minutes. The reaction mixture was adjusted to pH 7, evaporated and extracted with *n*-butanol at pH 2.0. The extract was concentrated *in vacuo* to dryness (170 mg) which was chromatographed on a silica gel column (50 ml) eluted with CH₂Cl₂-MeOH (20:1, 10:1, 7:1 and 3.1). The eluates were checked by TLC (SiO₂: CH₂Cl₂-MeOH 3:1). Evaporation of the first anthrone positive eluate (Rf 0.43) gave a residue which was purified by a column of Sephadex LH-20 (100 ml) with 90% MeOH to yield a white sticky solid (40 mg) of 10. The second (Rf 0.18) were worked up in a similar way to obtain a white, hygroscopic powder (70 mg) of 11.

10: FAB-MS m/z 765 (M – H)⁻, $[\alpha]_D^{25} - 27^{\circ}$ (c 0.7, MeOH), IR (neat) cm⁻¹ 3400, 2920, 2850, 1730, 1710, 1100 ~ 1000, ¹H NMR (400 MHz, pyridine- d_5) δ 4.96 (1H, d, J=7.7 Hz), 4.84 (1H, d, J=8.1 Hz), 4.51 (1H, dd, J=2.6 and 11.5 Hz), 4.49 (1H, dd, J=2.6 and 11.5 Hz), 4.48 (1H, m), 4.35 (1H, dd, J=5.1 and 11.5 Hz), 4.31 (1H, dd, J=5.6 and 11.5 Hz), 4.17 (4H, m), 3.97 (1H, t-like, J=8.5 Hz), 3.92 (2H, m), 3.86 (1H, m), 3.81 (3H, s), 3.63 (3H, s), 3.43 (1H, t, J=8.3 Hz), 3.07 (1H, dd, J=6.4 and 15.4 Hz), 2.70 (1H, dd, J=6.4 and 15.4 Hz), 2.36 (2H, t, J=7.7 Hz), 2.03 (3H, s), 1.2 ~ 1.8 (34H, m), ¹³C NMR see Table 2.

11: FAB-MS m/z 971 (M – H)⁻, $[\alpha]_D^{24} - 27^\circ$ (c 0.5, MeOH), IR (KBr) cm⁻¹ 3420, 2930, 2850, 1735, 1100 ~ 1000. ¹H NMR (400 MHz, pyridine- d_5) δ 4.95 (1H, d, J=7.7 Hz), 4.85 (1H, d, J=7.7 Hz), 4.81 (1H, d, J=7.7 Hz), 4.50 (4H, m), 4.34 (3H, m), 4.15 (6H, m), 3.86 ~ 4.06 (6H, m), 3.81 (3H, s), 3.77 (3H, s), 3.63 (3H, s), 3.41 (2H, q, J=8.4 Hz), 3.06 (1H, dd, J=6.2 and 15.4 Hz), 2.70 (1H, dd, J=6.2 and 15.4 Hz), 1.16 ~ 1.82 (40H, m), 1.22 (3H, d, J=6.2 Hz), ¹³C NMR see Table 2.

Upon treatment with $1 \times \text{KOH}$ - MeOH at 43° C for 1 hour, 10 afforded 5, methyl ester of 5 and 4, and 11 yielded 3, methyl ester of 3 and 4 by a similar treatment.

Acknowledgment

The authors are very grateful to Dr. TOSHIKO TANIMOTO of Mukogawa Women's University for kind gift of methyl 3,4,6-tri-O-acetyl-2-O-methyl- β -D-glucoside. They wish to thank Prof. MAMORU OHASHI of the University of Electro-Communications for his valuable discussions and members of the Analytical Chemistry group of this Institute for spectral measurements.

References

- TSUNAKAWA, M.; N. KOMIYAMA, O. TENMYO, K. TOMITA, K. KAWANO, C. KOTAKE, M. KONISHI & T. OKI: New antiviral antibiotics, cycloviracins B₁ and B₂. I. Production, isolation, physico-chemical properties and biological activity. J. Antibiotics 45: 1467~1471, 1992
- CURATOLS, W.; L. J. NEURINGER, D. RUBEN & R. HABERKORN: Two-dimensional J-resolved ¹H-nuclear magnetic resonance spectroscopy of α,β-D-glucose at 500 MHz, Carbohydr. Res. 112: 297~300, 1983
- GORIN, P. A. J. & M. MAZUREK: Further studies on the assignment of signals in ¹³C magnetic resonance spectra of aldoses and derived methyl glycosides. Can. J. Chem. 53: 1212~1223, 1975
- KOIZUMI, K. & T. UTAMURA: Trityl derivatives of cellobiose. IV. Studies on the relative reactivities of the secondary hydroxyl groups in 6,6'-di-O-tritylcellobiose and methyl 6,6'-di-O-trityl-β-cellobioside by selective acetylation. Chem. Pharm. Bull. 29: 2776~2784, 1981
- 5) SALINAS, A. E.; J. F. SPROVIERO & V. DEULOFEU: Ammonolysis of penta-O-benzoyl-α-D-glucopyranose in an aprotic medium. Characterization of the products isolated, and conformational analysis of eleven N-benzol-Dglycofuranosylamine derivatives. Carbohydr. Res. 170: 71~99, 1987
- ODHAM, G. & E. STENHAGEN: Fatty acids. In Biochemical applications of mass spectrometry. Ed., G. R. WALLER, pp. 211~228, Wiley-Interscience, 1972
- YAMAOKA, N.; T. USUI, H. SUGIYAMA & S. SETO: C-13 NMR spectra of some aminosugars and sugar-antibiotics, neomycin and kanamycin. Chem. Pharm. Bull. 22: 2196~2200, 1974

1480

- YOSHIMOTO, K.; Y. ITATANI & Y. TSUDA: ¹³C-Nuclear magnetic resonance (NMR) spectra of O-acylglucoses. Additivity of shift parameters and its application to structure elucidations. Chem. Pharm. Bull. 28: 2065 ~ 2076, 1980
- 9) ITOH, S.; H. HONDA, F. TOMITA & T. SUZUKI: Rhamnolipids produced by *Pseudomonas aeruginosa* grown on *n*-paraffin (mixture of C₁₂, C₁₃ and C₁₄ fractions). J. Antibiotics 24: 855~859, 1971
- NISHIDA, F.; Y. MORI, C. SONOBE & M. SUZUKI: Structure elucidation of glycosidic antibiotics glykenins from Basidiomycetes sp. III. Structure of glykenin IV. J. Antibiotics 44: 541~545, 1991